

### Features

- Intelligent reverse connect protection, the power supply reverse connection does not damage the IC.
- The control circuit and the LED share the only power source.
- Control circuit and RGBW chip are integrated in a package of 5050 components, form a complete control of pixel point.
- Built-in signal reshaping circuit, after wave reshaping to the next driver, ensure wave-form distortion not accumulate.
- Built-in electric reset circuit and power lost reset circuit.
- Gray level adjusting circuit (256 level gray scale adjustable)
- Cascading port transmission signal by single line.
- Any two point the distance more than 5m transmission signal without any increase circuit.
- Using a typical data transmission frequency of 800 Kbps, when the refresh rate of 30 frames per sec

### Applications

Input voltage

Storage Temperature

- LED decorative lighting, Indoor/outdoor LED video irregular screen
- Full-color module, Full color soft lights a lamp strip.

 $V_{DD}$ 

VI

Topt

Tstg



**Absolute Maximum Rating** 

Operation junction temperature







### Directivity

Unit

v

V

°C

°C



# ■Electrical Characteristics (Ta-20~+70°C, VDD=4.5~5.5V, Vss=0V unless otherwise specified)

(Ta=25℃)

Value

+3.7~+5.5

-0.5~VDD+0.5

-40~+85

-40 ~ +85

| Parmeter                           | Symbol  | Min      | Typical | Max      | Unit | Test conditions |  |
|------------------------------------|---------|----------|---------|----------|------|-----------------|--|
| The chip supply voltage            | VDD 5.2 |          | 5.2     |          | V    |                 |  |
| The signal input flip<br>threshold | VIH     | 0.7*+VDD |         |          | v    | VDD-5 0V        |  |
|                                    | VIL     |          |         | 0.3*+VDD | v    | VDD=5.0V        |  |
| The frequency of PWM               | FPWM    |          | 4       |          | KHZ  |                 |  |
| Static power consumption           | IDD     |          | 0.29    |          | mA   |                 |  |











### Switching Characteristics

| parameter                               | Symbol | Min | Typical<br>value | Max | Unit | Test conditions                                                                                |
|-----------------------------------------|--------|-----|------------------|-----|------|------------------------------------------------------------------------------------------------|
| Data transmission speed                 | fDIN   |     | 800              |     | KHZ  | Duty cycle 67% (data 1)                                                                        |
|                                         | TPLH   |     | 100              |     | ns   | The earth load capacitance of                                                                  |
| Dout transmission<br>delay              | TPHL   |     | 100              |     | ns   | the dout port is 30pf, and the<br>signal transmission delay<br>from DIN to dout                |
| Dout conversion time                    | TTLH   |     | 20               |     | ns   | The earth load capacitance of                                                                  |
|                                         | TTHL   |     | 10               |     | ns   | the dout port is 30pf                                                                          |
| Output R / G / B / W<br>conversion time | Tr     |     | 152              |     | ns   | IOUT R / B= 5mA, out R /G/                                                                     |
|                                         | Tf     |     | 300              |     | ns   | $\Omega$ resistor to VDD in series ,<br>The earth load capacitance of<br>the dout port is 30pf |



# **LED** Characteristic Parameter

| Emitting color | Wavelength (nm)/CCT(K) | Luminous intensity (mcd) |  |  |
|----------------|------------------------|--------------------------|--|--|
|                | R/G/B IF=8mA           | W IF=16.5mA              |  |  |
| Red            | 620-630nm              | 250-450                  |  |  |
| Green          | 520-530nm              | 600-1000                 |  |  |
| Blue           | 460-470nm              | 120-250                  |  |  |
| White          | 5500-8500K             | 1800-2500                |  |  |

### **•** The Data Transfer Time

| Name |       |                            | Min. | Standard value | Max. | Unit |  |
|------|-------|----------------------------|------|----------------|------|------|--|
|      | Т     | Code period                | 1.20 |                |      | μs   |  |
|      | T0H   | 0 code, high level time    | 0.2  | 0.3            | 0.4  | μs   |  |
|      | TOL   | 0 code, low level time     | 0.8  |                |      | μs   |  |
|      | TIH   | 1 code, high level time    | 0.65 | 0.75           | 1.0  | μs   |  |
|      | T1L   | 1 code, low level time     | 0.2  |                |      | μs   |  |
|      | Reset | Reset code, low level time | >200 |                |      | μs   |  |

#### Sequence Chart





#### Cascade Method







5.0\*4.9\*1.6mm Intelligent Control RGBW LED

# OSSK5SF55

#### **Data Transmission Method**



Note: the D1 sends data for MCU, D2, D3, D4 for data forwarding automatic shaping cascade circuit.

### **Composition of 32bit Data**

| <b>G7</b>  | G6 | <b>G5</b> | <b>G4</b> | <b>G3</b>  | G2        | <b>G1</b> | G0        | <b>R</b> 7 | R6        | <b>R5</b>  | <b>R4</b>  |
|------------|----|-----------|-----------|------------|-----------|-----------|-----------|------------|-----------|------------|------------|
| <b>R3</b>  | R2 | <b>R1</b> | RO        | <b>B</b> 7 | <b>B6</b> | <b>B5</b> | <b>B4</b> | <b>B3</b>  | <b>B2</b> | <b>B</b> 1 | <b>B</b> 0 |
| <b>W</b> 7 | W6 | W5        | <b>W4</b> | W3         | W2        | W1        | W0        |            |           |            |            |

Note: high starting, in order to send data (G7 - G6 - .........W0)

# **Typical Application Circuit**









## Carrier Tape (Unit: mm)



# ■ Reel Size (Unit: mm)



# ■ Moisture-proof Bag







### General Description

OSSK5SF55 is a smart LED control circuit and light emitting circuit in one controlled LED source, which has the shape of a 5050 LED chip. Each lighting element is a pixel, and the intensities of the pixels are contained within the intelligent digital interface input. The output is driven by patented PWM technology, which effectively guarantees high consistency of the color of the pixels. The control circuit consists of a signal shaping amplification circuit, a built-in constant current circuit, and a high precision RC oscillator.

The data protocol being used is unipolar RZ communication mode. The 24-bit data is transmitted from the controller to DIN of the first element, and if it is accepted it is extracted pixel to pixel. After an internal data latch, the remaining data is passed through the internal amplification circuit and sent out on the DO port to the remaining pixels. The pixel is reset after the end of DIN. Using automatic shaping forwarding technology makes the number of cascaded pixels without signal transmission only limited by signal transmission speed.

The LED has a low driving voltage (which allows for environmental protection and energy saving), high brightness, scattering angle,

good consistency, low power, and long life. The control circuit is integrated in the LED above.

#### ■Storage

· Storage Conditions

Before opening the package:

The LEDs should be kept at 30°C or less and 60%RH or less. The LEDs should be used within a year. When storing the LEDs, moisture proof packaging with absorbent material (silica gel) is recommended.

 $\cdot$  After opening the package:

Soldering should be done right after opening the package (within 24hrs).

Keeping of a fraction, sealing and Temperature:  $5 \sim 30^{\circ}$ C Humidity: Less than 30%.

If the package has been opened more than 24Hours, components should be dried for 12hrs, at  $60\pm5^{\circ}$ C.

• Optosupply LED electrode sections are comprised of a silver plated copper alloy. The silver surface may be affected by environments which contain corrosive gases and so on. Please avoid conditions which may cause the LED to corrode, tarnish or discolor. This corrosion or discoloration may cause difficulty during soldering operations. It is recommended that the User use the LEDs as soon as possible.

· Please avoid rapid transitions in ambient temperature, especially in high humidity environments where condensation can occur.

#### **Soldering Heat Reliability**

· Reflow soldering Profile

- $\cdot$  Reflow soldering should not be done more than two times.
- $\cdot$  When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used. It should be confirmed beforehand whether the

#### characteristics of the LEDs will or will not be damaged by repairing.



