

OSV1XDE5E1E

■Features

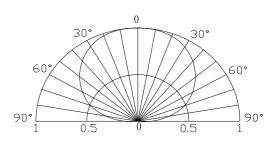
- Highest Luminous Flux
- Super Energy Efficiency
- Superior UV Resistance

■Applications

- Money Detector
- UV-Curing
- Sensor light
- Photo-catalyst
- Other Lighting

■Absolute Maximum Rating

	-		
Item	Symbol	Value	Unit
DC Forward Current	$I_{\rm F}$	1400	mA
Pulse Forward Current*	\mathbf{I}_{FP}	2000	mA
Reverse Voltage	V_R	5	V
Power Dissipation	PD	6300	mW
Operating Temperature	Topr	-30 ~ +85	°C
Storage Temperature	Tstg	-40~ +100	°C
Lead Soldering Temperature	Tsol	260°C/5sec	-


E.29 Cathode(-) BackView Anode

Directivity

•Outline Dimension

Unit:mm Tolerance:±0.30mm

Cathode

*Pulse width Max.10ms Duty ratio max 1/10

Electrical -Optical Characteristics

Item Symbol Condition Min. Тур. Max. Unit V DC Forward Voltage VF IF=1400mA 3.5 4.0 4.5 DC Reverse Current \mathbf{I}_{R} V_R=5V 20 μA --IF=1400mA Peak Wavelength λ_P 360 365 370 nm Radiant Power Ро IF=1400mA 1100 1300 mW 140 50% Power Angle $2\theta_{1/2}$ I_F=1400mA deg

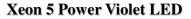
*1 Tolerance of measurements of Peak Wavelength is ± 1 nm

*2 Tolerance of measurements of Radiant Power is $\pm 15\%$

*3 Tolerance of measurements of forward voltage is ± 0.1 V

Note: Don't drive at rated current more than 5s without heat sink for Xeon 5 emitter series.

LED & Application Technologies



(Ta=25℃)

(Ta=25°C)

OSV1XDE5E1E

Handling of Silicone Lens LEDs

Notes for handling of silicone lens LEDs

- Please do not use a force of over 3kgf impact or pressure on the silicone lens, otherwise it will cause a catastrophic failure.
- The LEDs should only be picked up by making contact with the sides of the LED body.
- Avoid touching the silicone lens especially by sharp tools such as Tweezers.
- Avoid leaving fingerprints on the silicone lens.
- Please store the LEDs away from dusty areas or seal the product against dust.
- When populating boards in SMT production, there are basically no restrictions regarding the form of the pick and place nozzle, except that mechanical pressure on the silicone lens must be prevented.
- Please do not mold over the silicone lens with another resin. (epoxy, urethane, etc)

LED & Application Technologies

