

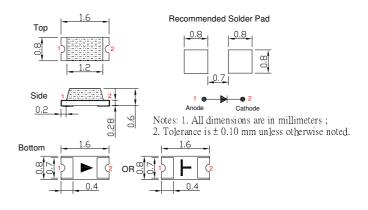
1.6x0.8 x0.6mm 940nm Infrared Chip LED

OSI50603C1E

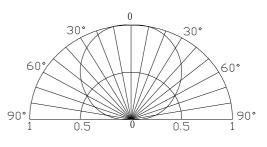
•Outline Dimension

Single chip

Features


- Compact package outline (L x W x T) of 1.6mm x 0.8mm x0.6mm
- Compatible to IR reflow soldering.
- Water Clear Lens Type

Applications


- Automatic Control System
- Photo Detector
- Computer I/O Peripheral

Absolute Maximum Rating

Item	Symbol	Value	Unit
DC Forward Current	$I_{\rm F}$	30	mA
Pulse Forward Current*	IFP	100	mA
Reverse Voltage	VR	5	V
Power Dissipation	PD	45	mW
Operating Temperature	Topr	-40 ~ +85	°C
Storage Temperature	Tstg	-40~ +85	°C
Lead Soldering Temperature	Tsol	260°C/5sec	-

Directivity

*Pulse width Max 0.1ms, Duty ratio max 1/10

■Electrical -Optical Characteristics

Item	Symbol	Conditio n	Min.	Тур.	Max.	Unit
DC Forward Voltage	V _F	IF=20mA	-	1.2	1.5	v
DC Reverse Current	IR	V _R =5V	-	-	10	μA
Peak Wavelength	λ_p	IF=20mA	-	940	-	nm
Transmit Bandwidth	λ	IF=20mA	-	45	-	nm
Radiant Intensity	Ie	IF=20mA	0.2	0.8	-	mW/Sr
50% Power Angle	2 0 1/2	IF=20mA	-	120	-	deg

*1 Tolerance of measurements of Peak wavelength is +1nm

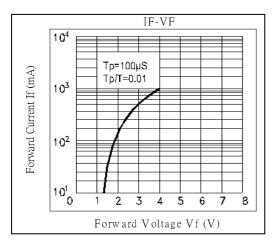
*2 Tolerance of measurements of radiant intensity is $\pm 15\%$

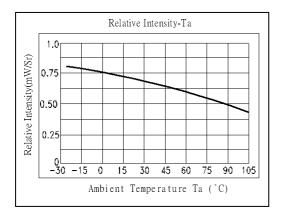
*3 Tolerance of measurements of forward voltage is ± 0.1 V

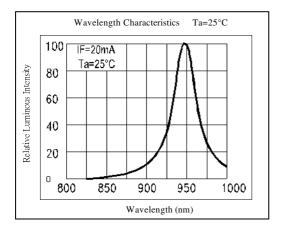
LED & Application Technologies

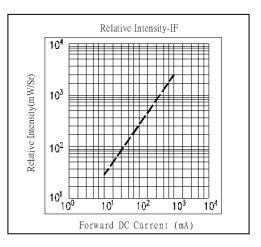
(Ta=25°C)

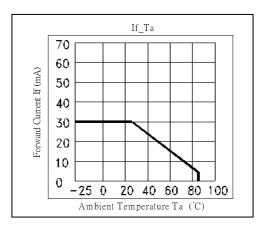
(Ta=25℃)

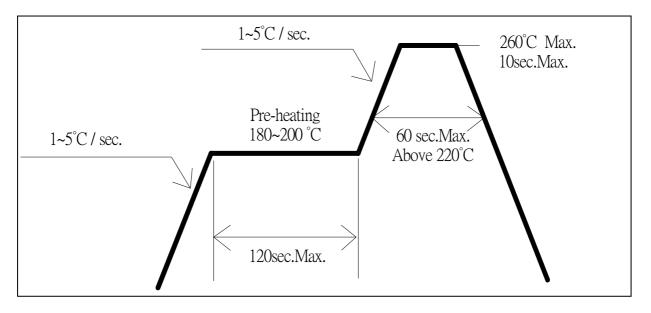







OSI50603C1E


■ Typical Electrical/Optical/Characteristics Curves



OSI50603C1E

Soldering Conditions

Reflow Soldering		Han	Hand Soldering		
Pre-Heat	180 ~ 200°C				
Pre-Heat Time	120 sec. Max.		350°C Max. 3 sec. Max. (one time only)		
Peak temperature	260°C Max.	Temperature			
Dipping Time	10 sec. Max.	Soldering time			
Condition	Refer to Temperature-profile				

• Reflow Soldering Condition(Lead-free Solder)

*Recommended soldering conditions vary according to the type of LED

*Although the recommended soldering conditions are specified in the above table, reflow, or hand soldering at the lowest possible temperature is desirable for the LEDs.

*A rapid-rate process is not recommended for cooling the LEDs down from the peak temperature.

•All SMD LED products are pb-free soldering available.

• Occasionally there is a brightness decrease caused by the influence of heat or ambient atmosphere during air reflow. It is recommended that the User use the nitrogen reflow method.

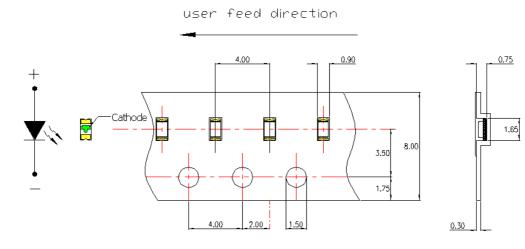
• Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable а

ISO 9001: 2008

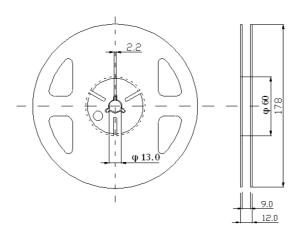
double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

- Reflow soldering should not be done more than two times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

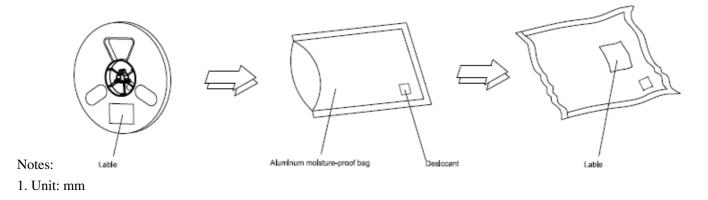
LED & Application Technologies


ATTENTION OBSERVE PRECAUTION

TIVE DEVICES



OSI50603C1E


TAPING

Reel Dimensions

Moisture Resistant Packaging

LED & Application Technologies

1.6x0.8 x0.6mm 940nm Infrared Chip LED

OSI50603C1E

Cautions:

1. After open the package, the LED's floor life is 4 Weeks under 30° C or less and 60%RH or less(MSL:2a).

2. Heat generation must be taken into design consideration when using the LED.

3. Power must be applied resistors for protection, over current would be caused the optic damage to the devices and wavelength shift.

4. Manual tip solder may cause the damage to Chip devices, so advised that heat of iron should be lower than 15W with temperature control under 5 seconds at 230-260 deg. C. (The device would be got damage in re working process, recommended under 5 seconds at 230-260 deg. C)

5. All equipment and machinery must be properly grounded. It is recommended to use a wristband or anti-electrostatic glove when handing the LED.

6. Use IPA as a solvent for cleaning the LED. The other solvent may dissolve the LED package and the epoxy, Ultrasonic cleaning should not be done.

7. Damaged LED will show unusual characteristics such as leak current remarkably increase, turn-on voltage becomes lower and the LED get unlight at low current.

LED & Application Technologies

