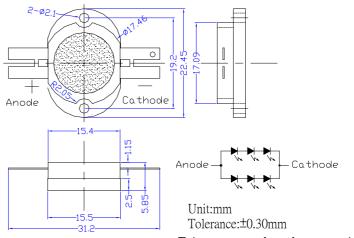


## **Tops 10 Power Pure White LED**

## **OSW4XAHAE1E**

VER A. 2

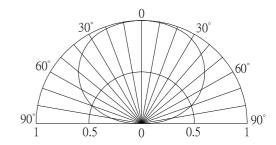

#### **Features**

- High-power LED
- Long lifetime operation
- Typical viewing angle: 140deg
- RoHS compliant
- Possible to attach to heat sink directly without using print circuit board.

### **Applications**

- Indoor & outdoor lighting
- Stage lighting
- Reading lamps
- Display cases, furniture illumination, marker
- Architectural illumination
- Spotlights

### **■Outline Dimension**




Tolerances are for reference only

# ■Absolute Maximum Rating

| Item                       | Symbol           | Value       | Unit                   |
|----------------------------|------------------|-------------|------------------------|
| DC Forward Current *1      | $I_{\mathrm{F}}$ | 1,400       | mA                     |
| Pulse Forward Current*2    | $I_{FP}$         | 2,000       | mA                     |
| Reverse Voltage            | $V_R$            | 15          | V                      |
| Power Dissipation*1        | $P_{D}$          | 17,640      | mW                     |
| Operating Temperature      | Topr             | -30 ~ +85   | $^{\circ}\!\mathbb{C}$ |
| Storage Temperature        | Tstg             | -40~ +100   | $^{\circ}\!\mathbb{C}$ |
| Lead Soldering Temperature | Tsol             | 260°€ /5sec | _                      |

### Directivity



<sup>\*1,</sup> Power dissipation and forward current are the value when the module temperature is set lower than the rating by using an adequate heat sink.

### **■**Electrical -Optical Characteristics

#### (Ta=25°C)

(Ta=25°C)

| Item               | Symbol           | Condition              | Min. | Typ. | Max. | Unit |
|--------------------|------------------|------------------------|------|------|------|------|
| DC Forward Voltage | $V_{\mathrm{F}}$ | $I_F = 1000 mA$        | 9.6  | 11.0 | 12.6 | V    |
| DC Reverse Current | $I_R$            | $V_R=15V$              | 1    | 1    | 20   | μΑ   |
| Luminous Flux      | Φν               | $I_F = 1000 \text{mA}$ | 750  | 850  | -    | lm   |
| Color Temperature  | CCT              | $I_F = 1000 \text{mA}$ | 1    | 6500 | -    | K    |
| Chromaticity       | X                | $I_F = 1000 \text{mA}$ | 1    | 0.31 | -    |      |
| Coordinates*       | у                | I <sub>F</sub> =1000mA | -    | 0.34 | -    |      |
| 50% Power Angle    | 201/2            | I <sub>F</sub> =1000mA | -    | 140  | -    | deg  |

Note: Don't drive at rated current more than 5s without heat sink for High Power series.

<sup>\*3</sup> Tolerance of measurements of forward voltage is±0.1V











<sup>\*2,</sup> Pulse width Max.10ms Duty ratio max 1/10

<sup>\*1</sup> Tolerance of measurements of chromaticity coordinate is ±10%

<sup>\*2</sup> Tolerance of measurements of luminous flux is ±15%



# **Tops 10 Power Pure White LED**

## **OSW4XAHAE1E**

VER A. 2

### **■**Heat design

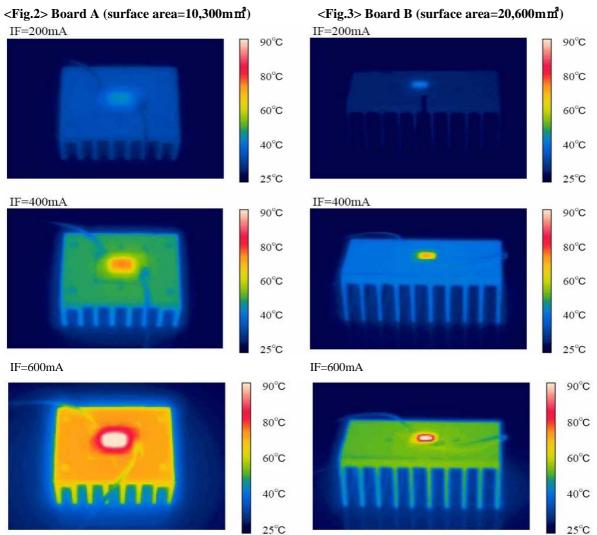

The following pictures show some measurements of mounted 5W Led on the heat sink for each board A and B (See Fig 1) with using thermograph to make an observation about heat distribution. Each boards is tested at various current conditions. As a result, LED needs larger heat sink as much as possible to reduce its own case temperature.

Fig. 1 Configuration pattern examples for board assembly

| Board | LED power | Material | Surface area (mm²) Min. |  |  |
|-------|-----------|----------|-------------------------|--|--|
| A     | 5W        | Al       | 20,600                  |  |  |
| В     | 10W       | Al       | 41,200                  |  |  |
| С     | 25W       | Al       | 103,000                 |  |  |
| D     | 50W       | Al       | 206,000                 |  |  |
| Е     | 100W      | Al       | 412,000                 |  |  |
| F     | 200W      | Al       | 824,000                 |  |  |
| G     | 300W      | Al       | 1236,000                |  |  |

Above tested LED device is attached with adhesive sheet to the heatsink.

For reference's sake, Tj absolute maximum rating is defined at 115°C as a prerequisite on design process of 5W LED.



**LED & Application Technologies** 

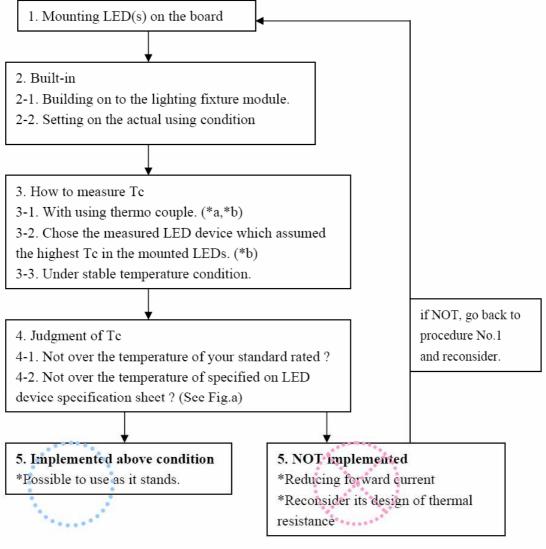


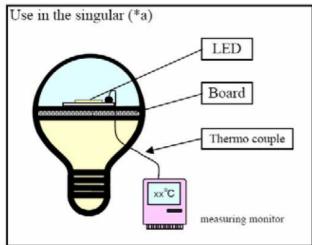


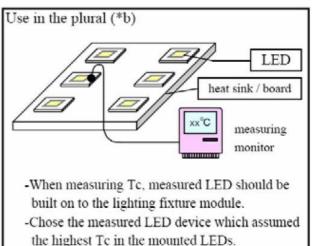




http://www.optosupply.com VER A.0





### **Tops 10 Power Pure White LED**


## **OSW4XAHAE1E**

VER A. 2

## **■**Heat design → Design flow chart







### **LED & Application Technologies**







